Viaggio in treno (finestrini)

Descrizione del problema

Carmen sta andando a Biella per preparare le OII! Purtroppo, nella carrozza del treno su cui viaggia, non funziona l'aria condizionata. Aiutala a decidere quali finestrini aprire.

Figure 1: "Il treno su cui viaggia Carmen"

La carrozza ha N file di posti, ciascuna con un finestrino sul lato destro e uno sul lato sinistro. Inizialmente i finestrini sono tutti chiusi. Ogni finestrino richiede una certa energia per essere aperto: L_i per il finestrino sinistro e R_i per il finestrino destro della fila i. Spendendo meno energia possibile, Carmen vuole aprire alcuni finestrini in modo che:

- in ciascuna fila, ci sia esattamente un finestrino aperto, a sinistra o a destra (non entrambi, per evitare correnti d'aria),
- non ci siano tre file consecutive che, su uno stesso lato, abbiano i finestrini tutti chiusi.

Stabilisci il minimo valore di energia necessaria, in totale, per aprire i finestrini in modo da soddisfare queste condizioni.

Dati di input

La prima riga del file di input contiene un intero T, il numero di casi di test. Seguono T casi di test, numerati da 1 a T. Ogni caso di test è preceduto da una riga vuota.

Ogni caso di test è composto da N+1 righe:

- la prima riga contiene l'intero N;
- le successive N righe contengono ciascuna i due interi L_i e R_i .

Dati di output

Il file di output deve contenere la risposta ai casi di test che sei riuscito a risolvere. Per ogni caso di test che hai risolto, il file di output deve contenere una riga con la dicitura:

Case #t: e

dove t è il numero del caso di test (a partire da 1) e il valore e il minimo valore di energia necessario in totale.

Assunzioni

- T=24, nei file di input che scaricherai saranno presenti esattamente 24 casi di test.
- $1 \le N \le 1000$.
- $1 \le L_i, R_i \le 1\,000\,000$ per ogni $0 \le i \le N 1$.

Esempi di input/output

Input:	
5 1 4 1 4 4 5 1 4 3 2	
10 3 10 2 5 2 8 8 8 7 4 2 8 1 7 7 10 1 8 5 4	
Output: Case #1: 10 Case #2: 40	

Spiegazione

Nel **primo caso d'esempio** la carrozza ha N=5 file. Spendendo energia 10, possiamo aprire i seguenti finestrini:

- nella fila 0, a sinistra (spendendo energia 1)
- nella fila 1, a sinistra (spendendo energia 1)
- nella fila 2, a destra (spendendo energia 5)

- $\bullet\,\,$ nella fila 3, a sinistra (spendendo energia 1)
- nella fila 4, a destra (spendendo energia 2)

Non è possibile soddisfare le condizioni spendendo meno di 10. Pertanto, il minimo valore di energia necessaria per soddisfare le condizioni è 10

Nel **secondo caso d'esempio** la carrozza ha N=10 file. Il minimo valore di energia necessaria per soddisfare le condizioni è 40.